Add like
Add dislike
Add to saved papers

Scanning tunneling microscopy investigations of unoccupied surface states in two-dimensional semiconducting β-√3 × √3-Bi/Si(111) surface.

Two-dimensional surface structures often host a surface state in the bulk gap, which plays a crucial role in the surface electron transport. The diversity of in-gap surface states extends the category of two-dimensional systems and gives us more choices in material applications. In this article, we investigated the surface states of β-√3 × √3-Bi/Si(111) surface by scanning tunneling microscopy. Two nearly free electron states in the bulk gap of silicon were found in the unoccupied states. Combined with first-principles calculations, these two states were verified to be the Bi-contributed surface states and electron-accumulation-induced quantum well states. Due to the spin-orbit coupling of Bi atoms, Bi-contributed surface states exhibit free-electron Rashba splitting. The in-gap surface states with spin splitting can possibly be used for spin polarized electronics applications.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app