Journal Article
Review
Add like
Add dislike
Add to saved papers

Neurofibrillary tangles mediated human neuronal tauopathies: insights from fly models.

Tauopathies represent a group of neurodegenerative disorder which are characterized by the presence of tau positive specialized argyrophilic and insoluble intraneuronal and glial fibrillar lesions known as neurofibrillary tangles (NFTs). Tau is a neuron specific microtubule binding protein which is required for the integrity and functioning of neuronal cells, and hyperphosphorylation of tau and its subsequent aggregation and paired helical filaments (PHFs) and NFTs has emerged as one of the major pathogenic mechanisms of tauopathies in human and mammalian model systems. Modeling of human tauopathies in Drosophila results in manifestation of associated phenotypes, and a recent study has demonstrated that similar to human and mammalian models, accumulation of insoluble tau aggregates in the form of typical neurotoxic NFTs triggers the pathogenesis of tauopathies in fly models. In view of the availability of remarkable genetic tools, Drosophila tau models could be extremely useful for in-depth analysis of the role of NFTs in neurodegeneration and tau aetiology, and also for the screening of novel gene(s) and molecule(s) which suppress the toxicity of tau aggregates.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app