Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In situ measurement of perfluoroalkyl substances in aquatic systems using diffusive gradients in thin-films technique.

Water Research 2018 November 2
To better understand the environmental impact of ubiquitous perfluoroalkyl substances (PFASs) in waters, reliable and robust measurement techniques are needed. As one of the most widely used passive sampling approaches, diffusive gradients in thin-films (DGT) is not only easy to handle but also provides time-weighted analyte concentrations. Based on DGT with XAD18 as a binding agent, we developed a new methodology to measure two frequently detected PFASs in surface waters and wastewaters, i.e. perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Their diffusion coefficients in the diffusive gel, measured using an independent diffusion cell, were 4.37 × 10-6 and 5.08 × 10-6  cm2  s-1 at 25 °C, respectively. DGT had a high capacity for PFOA and PFOS at 196 and 246 μg per gel disk, suggesting the DGT sampler was suitable for deployment of several weeks. Time-integrated concentrations of PFOA and PFOS in a natural lake and river, and a municipal wastewater treatment plant effluent using DGT samplers deployed in situ for 12-33 d were comparable to those measured by a solid-phase extraction method coupled with high-frequency grab sampling. This study demonstrates that DGT is an effective tool for in situ monitoring of PFASs in natural waters and wastewaters.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app