Add like
Add dislike
Add to saved papers

Biodiesel Production via Trans-Esterification Using Pseudomonas cepacia Immobilized on Cellulosic Polyurethane.

ACS Omega 2018 June 31
In this work, Pseudomonas cepacia lipase immobilized on cellulosic polyurethane was used as a catalyst for biodiesel production via trans-esterification reactions in order to provide cost-effective methods of enzyme recycling. The efficacy of the immobilized enzyme catalyst at low loading (6.2 wt %) and the effects of temperature, water content, and reaction time in model trans-esterification of glyceryl trioctanoate were investigated extensively. It was found that water was necessary for the reaction of glyceryl trioctanoate with ethanol to proceed. A high conversion of glyceryl trioctanoate (∼70%) was obtained at 35 °C, with only 5.0 wt % of water content over a reaction period of 12 h.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app