Add like
Add dislike
Add to saved papers

Irregularly timed electrical pulses reduce adaptation of retinal ganglion cells.

OBJECTIVE: Retinal prostheses aim to provide visual percepts to blind people affected by diseases caused by photoreceptor degeneration. One of the main challenges presented by current devices is neural adaptation in the retina, which is believed to be the cause of fading-an effect where artificially produced percepts disappear over a short period of time, despite continuous stimulation of the retina. We aim to understand the neural adaptation generated in retinal ganglion cells (RGCs) during electrical stimulation.

APPROACH: Current visual prostheses use electrical pulses with fixed frequencies and amplitudes modulated over hundreds of milliseconds to stimulate the retina. However, in nature, neuronal spiking occurs with stochastic timing, hence the information received naturally from other neurons by RGCs is irregularly timed. We used a single epiretinal electrode to stimulate and compare rat RGC responses to stimulus trains of biphasic pulses delivered at regular and random inter-pulse intervals (IPI), the latter taken from an exponential distribution.

MAIN RESULTS: Our observations suggest that stimulation with random IPIs result in lower adaptation rates than stimulation with constant IPIs at frequencies of 50 Hz and 200 Hz. We also found a high proportion of lower amplitude action potentials, or spikelets. The spikelets were more prominent at high stimulation frequencies (50 Hz and 200 Hz) and were less susceptible to adaptation, but it was not clear if they propagated along the axon.

SIGNIFICANCE: Using random IPI stimulation in retinal prostheses reduces the decay of RGCs and this could potentially reduce fading of electrically induced visual perception.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app