Journal Article
Research Support, Non-U.S. Gov't
Research Support, U.S. Gov't, Non-P.H.S.
Add like
Add dislike
Add to saved papers

Survival of Tomato Outbreak Associated Salmonella Serotypes in Soil and Water and the Role of Biofilms in Abiotic Surface Attachment.

Salmonella serotypes linked to tomato-associated outbreaks were evaluated for survival in soil and water over a 40-day period. Salmonella enterica serotypes Anatum, Baildon, Braenderup, Montevideo, Newport, and Javiana were inoculated separately into sterile soil and water, followed by plating onto TSAYE and XLT4 at 10-day intervals. Biofilm production by Salmonella serotypes was measured on both quartz particles (soil surrogate) and glass coverslips, and was evaluated using a crystal violet dye assay. Salmonella populations in soil and water over 40 days indicated no significant differences between Salmonella serotypes tested (p > 0.05). Over a 40-day period, there was a 1.84 ± 0.22 log CFU/g and 1.56 ± 0.54 CFU/mL decrease in populations of Salmonella in soil and water, respectively. Enumeration indicated that Salmonella population fluctuated in water but decreased linearly in soil. All serotypes tested produced the "red dry and rough" morphotype on Congo Red agar. Biofilm produced by all the Salmonella serotypes tested was significantly different on quartz particles than on glass coverslips (p < 0.0001), indicating that material and surface characteristics could affect biofilm development. The ability of Salmonella serotypes to persist in soil or water and attach to abiotic surfaces through biofilm formation affirms that contact surfaces, soil, water, and sediment should be considered as possible sources of cross-contamination in the farm environment.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app