Add like
Add dislike
Add to saved papers

The Transcription Factor ATF4 Promotes Expression of Cell Stress Genes and Cardiomyocyte Death in a Cellular Model of Atrial Fibrillation.

Introduction: Cardiomyocyte remodelling in atrial fibrillation (AF) has been associated with both oxidative stress and endoplasmic reticulum (ER) stress and is accompanied by a complex transcriptional regulation. Here, we investigated the role the oxidative stress and ER stress responsive bZIP transcription factor ATF4 plays in atrial cardiomyocyte viability and AF induced gene expression.

Methods: HL-1 cardiomyocytes were subjected to rapid field stimulation. Forced expression of ATF4 was achieved by adenoviral gene transfer. Using global gene expression analysis and chromatin immunoprecipitation, ATF4 dependent transcriptional regulation was studied, and tissue specimen of AF patients was analysed by immunohistochemistry.

Results: Oxidative stress and ER stress caused a significant reduction in cardiomyocyte viability and were associated with an induction of ATF4. Accordingly, ATF4 was also induced by rapid field stimulation mimicking AF. Forced expression of wild type ATF4 promoted cardiomyocyte death. ATF4 was demonstrated to bind to the promoters of several cell stress genes and to induce the expression of a number of ATF4 dependent stress responsive genes. Moreover, immunohistochemical analyses showed that ATF4 is expressed in the nuclei of cardiomyocytes of tissue specimen obtained from AF patients.

Conclusion: ATF4 is expressed in human atrial cardiomyocytes and is induced in response to different types of cell stress. High rate electrical field stimulation seems to result in ATF4 induction, and forced expression of ATF4 reduces cardiomyocyte viability.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app