Add like
Add dislike
Add to saved papers

Bioreduction of Antimonate by Anaerobic Methane Oxidation in a Membrane Biofilm Batch Reactor.

Employing a special anaerobic membrane biofilm batch reactor (MBBR), we demonstrated antimonate (Sb(V)) reduction using methane (CH4 ) as the sole electron donor. Scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman and photoluminescence (PL) spectra identified that Sb2 O3 microcrystals were the main reduced products. The Sb(V) reduction rate increased continually over the 111-day experiment, which supports the enrichment of the microorganisms responsible for Sb(V) reduction to Sb(III). Copy numbers of the mcrA gene and archaeal and bacterial 16 S rRNA genes increased in parallel. Clone library and Illumina sequencing of 16S rRNA gene demonstrated that Methanosarcina became the dominant archaea in the biofilm, suggesting that Methanosarcina might play an important role in Sb(V) reduction in the CH4 -based MBBR.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app