Add like
Add dislike
Add to saved papers

Eucalyptol Inhibits Advanced Glycation End Products-Induced Disruption of Podocyte Slit Junctions by Suppressing Rage-Erk-C-Myc Signaling Pathway.

SCOPE: The maintenance of interpodocyte slit diaphragm is critical in the sieving function of glomerular filtration barrier. Eucalyptol is a natural constituent in aromatic plants with antioxidant properties. This study investigates whether and how eucalyptol inhibits podocyte slit diaphragm malfunction in glucose-exposed podocytes and diabetic mouse kidneys.

METHODS AND RESULTS: Podocytes were incubated in media containing 33 mm glucose with 1-20 μm eucalyptol. The in vivo model employed db/db mice orally administrated with 10 mg kg-1 eucalyptol. Nontoxic eucalyptol enhanced podocyte expression of nephrin, podocin, FAT-1, CD2AP, and α-actinin-4 diminished by glucose. Oral administration of eucalyptol augmented the induction of the slit diaphragm proteins, α-actinin-4, and integrin β1 in diabetic kidneys, and ameliorated glomerular fibrosis and foot process effacement. Eucalyptol counteracted the receptor of advanced glycation end products (RAGE) induction in podocytes with glucose or AGE-BSA, and elevated the reduction of the slit diaphragm proteins by AGE-BSA. Eucalyptol attenuated the RAGE induction and AGE accumulation in diabetic kidneys. The blockade of ERK-c-Myc signaling enhanced the nephrin and CD2AP expression downregulated in AGE-exposed podocytes. These results indicate that eucalyptol blocked glucose-induced AGE-RAGE axis and podocyte injury through disturbing RAGE-ERK-c-Myc signaling.

CONCLUSION: Eucalyptol may be a potent agent antagonizing diabetes-associated malformation of interpodocyte slit junction and podocyte actin cytoskeleton.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app