Add like
Add dislike
Add to saved papers

Conformational ensemble comparison for small molecules in drug discovery.

Quantification of three-dimensional similarity between small molecules is a fundamental tool of rational drug design. However, there are no widely-adopted scoring approaches for comparing whole conformational ensembles between molecules. Such scores would be desirable for scenarios in which properties of a molecule have been measured (e.g. activity against a target) but the relevant three dimensional structure is not known. In this study, a set of three complementary ensemble comparison scores is proposed. These are the maximum similarity between any pair of conformations; the proportion of the whole set of the conformations that are matched to within a threshold 3D similarity score; and the average value over these matched conformations of the molecular shape descriptor 'σ-fct', introduced by Ballester et al. The utility of this scoring set is demonstrated in three case studies. The first is an attempt to discriminate between the conformational behaviours of a series of compounds with varying types of cyclisations and other conformationally-significant modifications; the second is an analysis of the more and less active members of a series of GPR119 agonists plus an analysis of a series of orexin-1 antagonists; and the third case study is an attempt to obtain enrichment of active against inactive compounds for a subset of the DUD·E dataset, by ensemble comparison against an active reference compound.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app