Read by QxMD icon Read

Journal of Computer-aided Molecular Design

Maria Kadukova, Sergei Grudinin
We present a novel optimization approach to train a free-shape distance-dependent protein-ligand scoring function called Convex-PL. We do not impose any functional form of the scoring function. Instead, we decompose it into a polynomial basis and deduce the expansion coefficients from the structural knowledge base using a convex formulation of the optimization problem. Also, for the training set we do not generate false poses with molecular docking packages, but use constant RMSD rigid-body deformations of the ligands inside the binding pockets...
September 18, 2017: Journal of Computer-aided Molecular Design
Bentley M Wingert, Rick Oerlemans, Carlos J Camacho
The goal of virtual screening is to generate a substantially reduced and enriched subset of compounds from a large virtual chemistry space. Critical in these efforts are methods to properly rank the binding affinity of compounds. Prospective evaluations of ranking strategies in the D3R grand challenges show that for targets with deep pockets the best correlations (Spearman ρ ~ 0.5) were obtained by our submissions that docked compounds to the holo-receptors with the most chemically similar ligand. On the other hand, for targets with open pockets using multiple receptor structures is not a good strategy...
September 16, 2017: Journal of Computer-aided Molecular Design
Nuno Martinho, Liana C Silva, Helena F Florindo, Steve Brocchini, Teresa Barata, Mire Zloh
Dendrimers and dendrons offer an excellent platform for developing novel drug delivery systems and medicines. The rational design and further development of these repetitively branched systems are restricted by difficulties in scalable synthesis and structural determination, which can be overcome by judicious use of molecular modelling and molecular simulations. A major difficulty to utilise in silico studies to design dendrimers lies in the laborious generation of their structures. Current modelling tools utilise automated assembly of simpler dendrimers or the inefficient manual assembly of monomer precursors to generate more complicated dendrimer structures...
September 15, 2017: Journal of Computer-aided Molecular Design
Maria Kadukova, Sergei Grudinin
The 2016 D3R Grand Challenge 2 provided an opportunity to test multiple protein-ligand docking protocols on a set of ligands bound to farnesoid X receptor that has many available experimental structures. We participated in the Stage 1 of the Challenge devoted to the docking pose predictions, with the mean RMSD value of our submission poses of 2.9 Å. Here we present a thorough analysis of our docking predictions made with AutoDock Vina and the Convex-PL rescoring potential by reproducing our submission protocol and running a series of additional molecular docking experiments...
September 14, 2017: Journal of Computer-aided Molecular Design
Manon Réau, Florent Langenfeld, Jean-François Zagury, Matthieu Montes
The Drug Design Data Resource (D3R) Grand Challenges are blind contests organized to assess the state-of-the-art methods accuracy in predicting binding modes and relative binding free energies of experimentally validated ligands for a given target. The second stage of the D3R Grand Challenge 2 (GC2) was focused on ranking 102 compounds according to their predicted affinity for Farnesoid X Receptor. In this task, our workflow was ranked 5th out of the 77 submissions in the structure-based category. Our strategy consisted in (1) a combination of molecular docking using AutoDock 4...
September 14, 2017: Journal of Computer-aided Molecular Design
Xavier Fradera, Andreas Verras, Yuan Hu, Deping Wang, Hongwu Wang, James I Fells, Kira A Armacost, Alejandro Crespo, Brad Sherborne, Huijun Wang, Zhengwei Peng, Ying-Duo Gao
We describe the performance of multiple pose prediction methods for the D3R 2016 Grand Challenge. The pose prediction challenge includes 36 ligands, which represent 4 chemotypes and some miscellaneous structures against the FXR ligand binding domain. In this study we use a mix of fully automated methods as well as human-guided methods with considerations of both the challenge data and publicly available data. The methods include ensemble docking, colony entropy pose prediction, target selection by molecular similarity, molecular dynamics guided pose refinement, and pose selection by visual inspection...
September 14, 2017: Journal of Computer-aided Molecular Design
Insun Park, Ashwini M Londhe, Ji Woong Lim, Beoung-Geon Park, Seo Yun Jung, Jae Yeol Lee, Sang Min Lim, Kyoung Tai No, Jiyoun Lee, Ae Nim Pae
Cyclophilin D (CypD) is a mitochondria-specific cyclophilin that is known to play a pivotal role in the formation of the mitochondrial permeability transition pore (mPTP).The formation and opening of the mPTP disrupt mitochondrial homeostasis, cause mitochondrial dysfunction and eventually lead to cell death. Several recent studies have found that CypD promotes the formation of the mPTP upon binding to β amyloid (Aβ) peptides inside brain mitochondria, suggesting that neuronal CypD has a potential to be a promising therapeutic target for Alzheimer's disease (AD)...
September 14, 2017: Journal of Computer-aided Molecular Design
Pedro A Sánchez-Murcia, Álvaro Cortés-Cabrera, Federico Gago
At least four classes of structurally distinct natural products with potent antiproliferative activities target the translation elongation factor eEF1A1, which is best known as the G-protein that delivers amino acyl transfer RNAs (aa-tRNAs) to ribosomes during mRNA translation. We present molecular models in atomic detail that provide a common structural basis for the high-affinity binding of didemnin B, ternatin, ansatrienin B and nannocystin A to eEF1A1, as well as a rationale based on molecular dynamics results that accounts for the deleterious effect of replacing alanine 399 with valine...
September 12, 2017: Journal of Computer-aided Molecular Design
Christina Schindler, Friedrich Rippmann, Daniel Kuhn
Physics-based free energy simulations have increasingly become an important tool for predicting binding affinity and the recent introduction of automated protocols has also paved the way towards a more widespread use in the pharmaceutical industry. The D3R 2016 Grand Challenge 2 provided an opportunity to blindly test the commercial free energy calculation protocol FEP+ and assess its performance relative to other affinity prediction methods. The present D3R free energy prediction challenge was built around two experimental data sets involving inhibitors of farnesoid X receptor (FXR) which is a promising anticancer drug target...
September 12, 2017: Journal of Computer-aided Molecular Design
Eko Aditya Rifai, Marc van Dijk, Nico P E Vermeulen, Daan P Geerke
Computational protein binding affinity prediction can play an important role in drug research but performing efficient and accurate binding free energy calculations is still challenging. In the context of phase 2 of the Drug Design Data Resource (D3R) Grand Challenge 2 we used our automated eTOX ALLIES approach to apply the (iterative) linear interaction energy (LIE) method and we evaluated its performance in predicting binding affinities for farnesoid X receptor (FXR) agonists. Efficiency was obtained by our pre-calibrated LIE models and molecular dynamics (MD) simulations at the nanosecond scale, while predictive accuracy was obtained for a small subset of compounds...
September 9, 2017: Journal of Computer-aided Molecular Design
Farzaneh Sarrami, Li-Juan Yu, Amir Karton
During a respiratory burst the enzyme myeloperoxidase generates significant amounts of hypohalous acids (HOX, X = Cl and Br) in order to inflict oxidative damage upon invading pathogens. However, excessive production of these potent oxidants is associated with numerous inflammatory diseases. It has been suggested that the endogenous antioxidant carnosine is an effective HOCl scavenger. Recent computational and experimental studies suggested that an intramolecular Cl(+) transfer from the imidazole ring to the terminal amine might play an important role in the antioxidant activity of carnosine...
September 8, 2017: Journal of Computer-aided Molecular Design
Polo C-H Lam, Ruben Abagyan, Maxim Totrov
Ligand docking to flexible protein molecules can be efficiently carried out through ensemble docking to multiple protein conformations, either from experimental X-ray structures or from in silico simulations. The success of ensemble docking often requires the careful selection of complementary protein conformations, through docking and scoring of known co-crystallized ligands. False positives, in which a ligand in a wrong pose achieves a better docking score than that of native pose, arise as additional protein conformations are added...
September 8, 2017: Journal of Computer-aided Molecular Design
Xinqiang Ding, Ryan L Hayes, Jonah Z Vilseck, Murchtricia K Charles, Charles L Brooks
The opportunity to prospectively predict ligand bound poses and free energies of binding to the Farnesoid X Receptor in the D3R Grand Challenge 2 provided a useful exercise to evaluate CHARMM based docking (CDOCKER) and [Formula: see text]-dynamics methodologies for use in "real-world" applications in computer aided drug design. In addition to measuring their current performance, several recent methodological developments have been analyzed retrospectively to highlight best procedural practices in future applications...
September 7, 2017: Journal of Computer-aided Molecular Design
Martin A Olsson, Alfonso T García-Sosa, Ulf Ryde
We have studied the binding of 102 ligands to the farnesoid X receptor within the D3R Grand Challenge 2016 blind-prediction competition. First, we employed docking with five different docking software and scoring functions. The selected docked poses gave an average root-mean-squared deviation of 4.2 Å. Consensus scoring gave decent results with a Kendall's τ of 0.26 ± 0.06 and a Spearman's ρ of 0.41 ± 0.08. For a subset of 33 ligands, we calculated relative binding free energies with free-energy perturbation...
September 6, 2017: Journal of Computer-aided Molecular Design
Insun Park, Yu Jin Hwang, TaeHun Kim, Ambily Nath Indu Viswanath, Ashwini M Londhe, Seo Yun Jung, Kyoung Mi Sim, Sun-Joon Min, Ji Eun Lee, Jihye Seong, Yun Kyung Kim, Kyoung Tai No, Hoon Ryu, Ae Nim Pae
ERG-associated protein with the SET domain (ESET/SET domain bifurcated 1/SETDB1/KMT1E) is a histone lysine methyltransferase (HKMT) and it preferentially tri-methylates lysine 9 of histone H3 (H3K9me3). SETDB1/ESET leads to heterochromatin condensation and epigenetic gene silencing. These functional changes are reported to correlate with Huntington's disease (HD) progression and mood-related disorders which make SETDB1/ESET a viable drug target. In this context, the present investigation was performed to identify novel peptide-competitive small molecule inhibitors of the SETDB1/ESET by a combined in silico-in vitro approach...
September 6, 2017: Journal of Computer-aided Molecular Design
Samuel Genheden
We present the estimation of solvation free energies of small solutes in water, n-octanol and hexane using molecular dynamics simulations with two MARTINI models at different resolutions, viz. the coarse-grained (CG) and the hybrid all-atom/coarse-grained (AA/CG) models. From these estimates, we also calculate the water/hexane and water/octanol partition coefficients. More than 150 small, organic molecules were selected from the Minnesota solvation database and parameterized in a semi-automatic fashion. Using either the CG or hybrid AA/CG models, we find considerable deviations between the estimated and experimental solvation free energies in all solvents with mean absolute deviations larger than 10 kJ/mol, although the correlation coefficient is between 0...
September 5, 2017: Journal of Computer-aided Molecular Design
Ryo Kunimoto, Jürgen Bajorath
Patents from medicinal chemistry represent a rich source of novel compounds and activity data that appear only infrequently in the scientific literature. Moreover, patent information provides a primary focal point for drug discovery. Accordingly, text mining and image extraction approaches have become hot topics in patent analysis and repositories of patent data are being established. In this work, we have generated network representations using alternative similarity measures to systematically compare molecules from patents with other bioactive compounds, visualize similarity relationships, explore the chemical neighbourhood of patent molecules, and identify closely related compounds with different activities...
September 4, 2017: Journal of Computer-aided Molecular Design
Sudipta Samanta, Sanchita Mukherjee
The p53 protein activation protects the organism from propagation of cells with damaged DNA having oncogenic mutations. In normal cells, activity of p53 is controlled by interaction with MDM2. The well understood p53-MDM2 interaction facilitates design of ligands that could potentially disrupt or prevent the complexation owing to its emergence as an important objective for cancer therapy. However, thermodynamic quantification of the p53-peptide induced structural changes of the MDM2-protein remains an area to be explored...
September 4, 2017: Journal of Computer-aided Molecular Design
Edithe Selwa, Eddy Elisée, Agustin Zavala, Bogdan I Iorga
Our participation to the D3R Grand Challenge 2 involved a protocol in two steps, with an initial analysis of the available structural data from the PDB allowing the selection of the most appropriate combination of docking software and scoring function. Subsequent docking calculations showed that the pose prediction can be carried out with a certain precision, but this is dependent on the specific nature of the ligands. The correct ranking of docking poses is still a problem and cannot be successful in the absence of good pose predictions...
September 2, 2017: Journal of Computer-aided Molecular Design
Han Cao, Marcus C K Ng, Siti Azma Jusoh, Hio Kuan Tai, Shirley W I Siu
[Formula: see text]-Helical transmembrane proteins are the most important drug targets in rational drug development. However, solving the experimental structures of these proteins remains difficult, therefore computational methods to accurately and efficiently predict the structures are in great demand. We present an improved structure prediction method TMDIM based on Park et al. (Proteins 57:577-585, 2004) for predicting bitopic transmembrane protein dimers. Three major algorithmic improvements are introduction of the packing type classification, the multiple-condition decoy filtering, and the cluster-based candidate selection...
September 1, 2017: Journal of Computer-aided Molecular Design
Fetch more papers »
Fetching more papers... Fetching...
Read by QxMD. Sign in or create an account to discover new knowledge that matter to you.
Remove bar
Read by QxMD icon Read

Search Tips

Use Boolean operators: AND/OR

diabetic AND foot
diabetes OR diabetic

Exclude a word using the 'minus' sign

Virchow -triad

Use Parentheses

water AND (cup OR glass)

Add an asterisk (*) at end of a word to include word stems

Neuro* will search for Neurology, Neuroscientist, Neurological, and so on

Use quotes to search for an exact phrase

"primary prevention of cancer"
(heart or cardiac or cardio*) AND arrest -"American Heart Association"