Add like
Add dislike
Add to saved papers

Reprogramming of Th1 cells into regulatory T cells through rewiring of the metabolic status.

T helper type 1 (Th1) cells form one of the most stable CD4 T-cell subsets, and direct conversion of fully differentiated Th1 to regulatory T (Treg) cells has been poorly investigated. Here, we established a culture method for inducing Foxp3 from Th1 cells of mice and humans. This is achieved simply by resting Th1 cells without T-cell receptor ligation before stimulation in the presence of transforming growth factor-beta (TGF-β). We named the resulting Th1-derived Foxp3+ cells Th1reg cells. Mouse Th1reg cells showed an inducible Treg-like phenotype and suppressive ability both in vitro and in vivo. Th1reg cells could also be induced from in vivo-developed mouse Th1 cells. Unexpectedly, the resting process enabled Foxp3 expression not through epigenetic changes at the locus, but through metabolic change resulting from reduced mammalian target of rapamycin complex 1 (mTORC1) activity. mTORC1 suppressed TGF-β-induced phosphorylation of Smad2/3 in Th1 cells, which was restored in rested cells. Our study warrants future research aiming at development of immunotherapy with Th1reg cells.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app