Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

In vitro analysis of antigen induced T cell-monocyte conjugates by imaging flow cytometry.

There is a lack of suitable correlates of immune protection against Mycobacterium tuberculosis (Mtb) infection. T cells and monocytes play key roles in host immunity against Mtb. Thus, a method that allows assessing their interaction would contribute to the understanding of immune regulation in tuberculosis (TB). We have established imaging flow cytometer (IFC) based in vitro assay for the analysis of early events in T cell-monocyte interaction, upstream of cytokine production and T cell proliferation. This was achieved through short term stimulation of peripheral blood mononuclear cells (PBMC) from healthy Norwegian blood donors with Mycobacterium bovis Bacille Calmette-Guérin (BCG). In our assay, we examined the kinetics of BCG uptake by monocytes using fluorescently labeled BCG and T cell-monocyte interaction based on synapse formation (CD3/TCR polarization). Our results showed that BCG stimulation induced a gradual increase in the proportion of conjugated T cells displaying NF-κB translocation to the nucleus in a time dependent manner, with the highest frequency observed at 6 h. We subsequently tested PBMC from a small cohort of active TB patients (n = 7) and observed a similar BCG induced NF-κB translocation in T cells conjugated with monocytes. The method allowed for simultaneous evaluation of T cell-monocyte conjugates and T cell activation as measured by NF-κB translocation, following short-term challenge of human PBMC with BCG. Whether this novel approach could serve as a diagnostic or prognostic marker needs to be investigated using a wide array of Mtb specific antigens in a larger cohort of patients with different TB infection status.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app