Add like
Add dislike
Add to saved papers

Optimization of Taylor spatial frame half-pins diameter for bone deformity correction: Application to femur.

Using external fixtures for bone deformity correction takes advantages of less soft tissue injury, better bone alignment and enhances strain development for bone formation on cutting section, which cause shorter healing time. Among these fixtures, Taylor spatial frame is widely used and includes two rings and six adjustable struts developing 6 degrees of freedom, making them very flexible for this type of application. The current study describes a method to optimize Taylor spatial frame pin-sizes currently chosen from the surgeon's experiences. A three-dimensional model of femur was created from computed tomography images; segmentation of the medical images was made based on the Hounsfield unit (gray scale) in order to allocate adequate mechanical properties into cortical and trabecular bone sections. Both the cortical and trabecular sections were assumed to be isotropic and homogeneous. The diameter optimization of Taylor spatial frame's half-pins was carried out by coupling genetic algorithm and finite element analysis. The finite element analysis was based on a static mechanical load corresponding to a standing person's body weight. Finite element analysis results were validated with experimentally measured strains obtained from bone compression tests. A cost function, based on the developed bone stresses, was defined close to the Taylor spatial frame's half-pins. The calculated cost function showed a decrease of over 33% from the initial half-pin selection by the surgeon and the genetic algorithm optimization. Consequently, the maximum stresses experienced by the bone in the connected location of the half-pins decreased from 121.4 MPa in the surgeon's selection to 73.07 MPa as a result of the optimization process.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app