Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Exosomes derived from calcium oxalate-exposed macrophages enhance IL-8 production from renal cells, neutrophil migration and crystal invasion through extracellular matrix.

Journal of Proteomics 2018 August 16
Deposition of calcium oxalate (CaOx) crystals in renal interstitium is one of the key factors that cause progressive inflammation in kidney stone disease. Macrophages are responsible for elimination of these crystals but their roles to worsen inflammatory process remain under-investigated. This study thus aimed to define roles of exosomes released from macrophages exposed to CaOx crystals in mediating subsequent inflammatory cascades. Macrophages were incubated with or without CaOx monohydrate (COM) crystals for 16 h and their exosomes were isolated. Quantitative proteomics using nanoLC-ESI-Qq-TOF MS/MS revealed 26 proteins with significantly altered levels in exosomes derived from COM-treated macrophages (COM-treated exosomes) comparing to those derived from the controlled macrophages (controlled exosomes). Protein network analysis showed that these altered proteins were involved in cytoskeleton and actin binding, calcium binding, stress response, transcription regulation, immune response and extracellular matrix disassembly. Functional investigations revealed that COM-treated exosomes enhanced IL-8 production from renal tubular cells, activated neutrophil migration, had increased (exosomal) membrane fragility, had greater binding capacity to COM crystals, and subsequently enhanced crystal invasion through extracellular matrix migration chamber. These data indicate that macrophage exosomes play important roles in inflammatory response to COM crystals and may be involved in crystal invasion in the renal interstitium.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app