Journal Article
Review
Add like
Add dislike
Add to saved papers

Potential Inherent Stimulation of the Innate Immune System by Nucleic Acid Aptamers and Possible Corrective Approaches.

Pharmaceuticals 2018 June 24
It is well known that unmethylated 2′-deoxycytidine-phosphate-2′-guanine (CpG) sequences alone or in longer DNA and RNA oligonucleotides can act like pathogen-associated molecular patterns (PAMPs) and trigger the innate immune response leading to deleterious cytokine production via Toll-like receptors (TLRs). Clearly, such CpG or CpG-containing sequences in aptamers intended for therapy could present very damaging side effects to patients. Previous antisense oligonucleotide developers were faced with the same basic CpG dilemma and devised not only avoidance, but other effective strategies from which current aptamer developers can learn to ameliorate or eliminate damaging CpG effects. These strategies include obvious methylation of cytosines in the aptamer structure, as long as it does not affect aptamer binding in vivo, truncation of the aptamer to its essential binding site, backbone modifications, co-administration of antagonistic or suppressive oligonucleotides, or other novel drugs under development to lessen the toxic CpG effect on innate immunity.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app