Add like
Add dislike
Add to saved papers

A cortical substrate for the long-term memory of saccadic eye movements calibration.

NeuroImage 2018 October 2
How movements are continuously adapted to physiological and environmental changes is a fundamental question in systems neuroscience. While many studies have elucidated the mechanisms which underlie short-term sensorimotor adaptation (∼10-30 min), how these motor memories are maintained over longer-term (>3-5 days) -and thanks to which neural systems-is virtually unknown. Here, we examine in healthy human participants whether the temporo-parietal junction (TPJ) is causally involved in the induction and/or the retention of saccadic eye movements' adaptation. Single-pulse transcranial magnetic stimulation (spTMS) was applied while subjects performed a ∼15min size-decrease adaptation task of leftward reactive saccades. A TMS pulse was delivered over the TPJ in the right hemisphere (rTPJ) in each trial either 30, 60, 90 or 120 msec (in 4 separate adaptation sessions) after the saccade onset. In two control groups of subjects, the same adaptation procedure was achieved either alone (No-TMS) or combined with spTMS applied over the vertex (SHAM-TMS). While the timing of spTMS over the rTPJ did not significantly affect the speed and immediate after-effect of adaptation, we found that the amount of adaptation retention measured 10 days later was markedly larger (42%) than in both the No-TMS (21%) and the SHAM-TMS (11%) control groups. These results demonstrate for the first time that the cerebral cortex is causally involved in maintaining long-term oculomotor memories.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app