Add like
Add dislike
Add to saved papers

Comparison of Acetate-butyrate and Acetate-ethanol Metabolic Pathway in Biohydrogen Production.

Background: Hydrogen gas is the cleanest energy carrier and could be produced by biological process. Dark fermentation is one of the biohydrogen production methods that carried out just on organic wastes conversion.

Methods: In this study, the batch tests were conducted to compare the biohydrogen production and glucose fermentation via acetate-butyrate and acetate-ethanol metabolic pathway induced by NaOH and KOH (10 M) pretreatment. In batch test, the glucose concentration in the feed was varied from 3.75 to 15 g/L under mesophilic conditions (37°C ± 1°C). In order to sludge pretreatment, NaOH and KOH (as an alkaline agent) was used.

Results: Batch tests showed that maximum biohydrogen production under NaOH (2.7 ± 0.5 L) and KOH (2.2 ± 0.7 L) pretreatment was achieved at 15 g/L of influent glucose. In the batch test, with increasing influent glucose concentration, the lower yields of hydrogen were observed. The biohydrogen reactions had good electron closure (5.2%-13.5%) for various glucose concentrations and pretreatments. For NaOH and KOH pretreatment, the biohydrogen yield decreased from 2.49 to 1.63 and from 2.22 to 1.2 mol H2 /mol glucose, respectively, when glucose concentration increased from 3.75 to 15 g/L.

Conclusions: By applying alkaline sludge pretreatment by NaOH and KOH, the glucose fermentation was followed with acetate-butyrate and acetate-ethanol metabolic pathway, respectively. The lower biohydrogen yields were observed under acetate-ethanol metabolic pathway and related to metabolically unfavorable for biohydrogen production.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app