Add like
Add dislike
Add to saved papers

Estimation of Tri-Axial Walking Ground Reaction Forces of Left and Right Foot from Total Forces in Real-Life Environments.

Sensors 2018 June 20
Continuous monitoring of natural human gait in real-life environments is essential in many applications including disease monitoring, rehabilitation, and professional sports. Wearable inertial measurement units are successfully used to measure body kinematics in real-life environments and to estimate total walking ground reaction forces GRF(t) using equations of motion. However, for inverse dynamics and clinical gait analysis, the GRF(t) of each foot is required separately. Using an experimental dataset of 1243 tri-axial separate-foot GRF(t) time histories measured by the authors across eight years, this study proposes the 'Twin Polynomial Method' (TPM) to estimate the tri-axial left and right foot GRF(t) signals from the total GRF(t) signals. For each gait cycle, TPM fits polynomials of degree five, eight, and nine to the known single-support part of the left and right foot vertical, anterior-posterior, and medial-lateral GRF(t) signals, respectively, to extrapolate the unknown double-support parts of the corresponding GRF(t) signals. Validation of the proposed method both with force plate measurements (gold standard) in the laboratory, and in real-life environment showed a peak-to-peak normalized root mean square error of less than 2.5%, 6.5% and 7.5% for the estimated GRF(t) signals in the vertical, anterior-posterior and medial-lateral directions, respectively. These values show considerable improvement compared with the currently available GRF(t) decomposition methods in the literature.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app