Add like
Add dislike
Add to saved papers

New Approach for Controlling Snail Host of Schistosoma mansoni, Biomphalaria alexandrina with Cyanobacterial Strains-Derived C-Phycocyanin.

Schistosomiasis is one of the major communicable diseases of public health and socioeconomic importance in the developing world. It is a waterborne disease in which Biomphalaria alexandrina snails are known to be the intermediate molluscan host for Schistosoma mansoni: the causative agent of human intestinal schistosomiasis. Therefore, snail control is one of the cornerstones of schistosomiasis control programs. Several methods have been used to eliminate snail hosts. One of these methods is chemical molluscicides, which have undesirable effect to nontarget organisms. Consequently, the search for biologically derived molluscicides to complement the use of synthetic molluscicides is a top priority. In this concern, this study is the first to evaluate the molluscicidal potency of Cyanobacterial Phycocyanin (C-PC) as a virtually untapped source. Laboratory assessment of three freshwater Cyanobacterial strains: Anabaena oryzae SOS13, Nostoc muscorum SOS14, and Spirulina platensis SOS13-derived C-Phycocyanin as a biocontrol agent against freshwater mollusks; B. alexandrina snails were performed. Also, the safety of tested C-PC on nontarget organisms (Tilapia fish) was assessed. Results reveal that C-PC extracted from all tested Cyanobacteria strains showed a promising molluscicidal activity (the mortality rate was 100% at 100 μg/mL concentration). Out of the examined strains, A. oryzae SOS13 phycocyanin was found to be the most potent strain (LC50 and LC90 were 38.492 and 49.976 μg/mL, respectively). Moreover, C-PC extracts from all tested strains have been found to be safe to Tilapia fish as the survival rate was 100% at the effective molluscicidal concentrations. We can conclude that C-PC extracts are the first promising microbial biopesticides for the control of freshwater B. alexandrina snails.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app