Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Commensal pathogen competition impacts host viability.

While the structure and regulatory networks that govern type-six secretion system (T6SS) activity of Vibrio cholerae are becoming increasingly clear, we know less about the role of T6SS in disease. Under laboratory conditions, V. cholerae uses T6SS to outcompete many Gram-negative species, including other V. cholerae strains and human commensal bacteria. However, the role of these interactions has not been resolved in an in vivo setting. We used the Drosophila melanogaster model of cholera to define the contribution of T6SS to V. cholerae pathogenesis. Here, we demonstrate that interactions between T6SS and host commensals impact pathogenesis. Inactivation of T6SS, or removal of commensal bacteria, attenuates disease severity. Reintroduction of the commensal, Acetobacter pasteurianus , into a germ-free host is sufficient to restore T6SS-dependent pathogenesis in which T6SS and host immune responses regulate viability. Together, our data demonstrate that T6SS acts on commensal bacteria to promote the pathogenesis of V. cholerae .

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app