Add like
Add dislike
Add to saved papers

Effects of Annealing on the Residual Stress in γ-TiAl Alloy by Molecular Dynamics Simulation.

Materials 2018 June 16
In this paper, molecular dynamics simulations are performed to study the annealing process of γ-TiAl alloy with different parameters after introducing residual stress into prepressing. By mainly focusing on the dynamic evolution process of microdefects during annealing and the distribution of residual stress, the relationship between microstructure and residual stress is investigated. The results show that there is no phase transition during annealing, but atom distortion occurs with the change of temperature, and the average grain size slightly increases after annealing. There are some atom clusters in the grains, with a few point defects, and the point defect concentration increases with the rise in temperature, and vice versa; the higher the annealing temperature, the fewer the point defects in the grain after annealing. Due to the grain boundary volume shrinkage and and an increase in the plastic deformation of the grain boundaries during cooling, stress is released, and the average residual stress along Y and Z directions after annealing is less than the average residual stress after prepressing.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app