Add like
Add dislike
Add to saved papers

Effect of Blood Contamination on The Push-Out Bond Strength of Calcium Silicate Cements.

This study investigated the effect of blood-contamination on the push-out bond strength of BiodentineTM (BD) and MTA Angelus® (MTA-A) to root dentin over time. Twenty-five teeth were sectioned horizontally to obtain 120 root slices. The lumens were filled with MTA-A or BD: 60 for each cement (30 uncontaminated and 30 blood contaminated). Push out bond strength to dentin was assessed at 24 h (n=10), 7 days (n=10) and 28 days (n=10). Failure modes were classified as: cohesive, adhesive or mixed failure. Two-way ANOVA was used to investigate the interaction between blood contamination vs. hydration period. Mann Whitney test compared different materials in each period, and it also compared the contaminated versus uncontaminated material for each period. Friedman, followed by Dunn`s test, compared periods of hydration for each material, regardless of blood contamination. Failure modes were reported descriptively. The interaction hydration period vs. blood contamination was highly significant for MTA-A (P=0.001) and it was not significant for BD (P=0.474). There were no differences between bond strength of uncontaminated and contaminated BD in any of the periods. Bond strength of uncontaminated MTA-A increased at each time of hydration; but it remained stable over time for blood-contaminated samples. BD had higher bond strength than MTA-A in all periods of hydration. Cohesive failure predominated. Only for MTA-A, the over time bond strength to dentin was affected by blood contamination.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app