Add like
Add dislike
Add to saved papers

Model-Based Complete Enzymatic Production of 3,6-Anhydro-l-galactose from Red Algal Biomass.

3,6-Anhydro-l-galactose (l-AHG) is a bioactive constituent of agar polysaccharides. To be used as a cosmetic or pharmaceutical ingredient, l-AHG is more favorably prepared by enzymatic saccharification of agar using a combination of agarolytic enzymes. Determining the optimum enzyme combination from the natural repertoire is a bottleneck for designing an efficient enzymatic-hydrolysis process. We consider all theoretical enzymatic-saccharification routes in the natural agarolytic pathway of a marine bacterium, Saccharophagus degradans 2-40. Among these routes, three representative routes were determined by removing redundant enzymatic reactions. We simulated each l-AHG production route with simple kinetic models and validated the reaction feasibility with an experimental procedure. The optimal enzyme mixture (with 67.3% maximum saccharification yield) was composed of endotype β-agarase, exotype β-agarase, agarooligosaccharolytic β-galactosidase, and α-neoagarobiose hydrolase. This approach will reduce the time and effort needed for developing a coherent enzymatic process to produce l-AHG on a mass scale.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app