Add like
Add dislike
Add to saved papers

Objective evaluation of female feet and leg joint conformation at time of selection and post first parity in swine.

Feet and legs of replacement females were objectively evaluated at selection, i.e. approximately 150 days of age (n=319) and post first parity, i.e. any time after weaning of first litter and before 2nd parturition (n=277) to 1) compare feet and leg joint angle ranges between selection and post first parity; 2) identify feet and leg joint angle differences between selection and first three weeks of second gestation; 3) identify feet and leg join angle differences between farms and gestation days during second gestation; and 4) obtain genetic variance components for conformation angles for the two time points measured. Angles for carpal joint (knee), metacarpophalangeal joint (front pastern), metatarsophalangeal joint (rear pastern), tarsal joint (hock), and rear stance were measured using image analysis software. Between selection and post first parity significant differences were observed for all joints measured (P < 0.05). Knee, front and rear pastern angles were less (more flexion), and hock angles were greater (less flexion) as age progressed (P < 0.05), while the rear stance pattern was less (feet further under center) at selection than post first parity (only including measures during first three weeks of second gestation). Only using post first parity leg conformation information, farm was a significant source of variation for front and rear pasterns and rear stance angle measurements (P < 0.05). Knee angle was less (more flexion) (P < 0.05) as gestation age progressed. Heritability estimates were low to moderate (0.04 - 0.35) for all traits measured across time points. Genetic correlations between the same joints at different time points were high (> 0.8) between the front leg joints and low (<0.2) between the rear leg joints. High genetic correlations between time points indicate that the trait can be considered the same at either time point, and low genetic correlations indicate that the trait at different time points should be considered as two separate traits. Minimal change in the front leg suggests conformation traits that remain between selection and post first parity, while larger changes in rear leg indicate that rear leg conformation traits should be evaluated at multiple time periods.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app