Add like
Add dislike
Add to saved papers

Carbon limitation, stem growth rate and the biomechanical cause of Corner's rules.

Annals of Botany 2018 September 25
Background and aims: Corner's rules describe a global spectrum from large-leaved plants with thick, sparingly branched twigs with low-density stem tissues and thick piths to plants with thin, highly branched stems with high-density stem tissues and thin piths. The hypothesis was tested that, if similar crown areas fix similar amounts of carbon regardless of leaf size, then large-leaved species, with their distantly spaced leaves, require higher stem growth rates, lower stem tissue densities and stiffnesses, and therefore thicker twigs.

Methods: Structural equation models were used to test the compatibility of this hypothesis with a dataset on leaf size, shoot tip spacing, stem growth rate and dimensions, and tissue density and mechanics, sampling 55 species drawn from across the angiosperm phylogeny from a morphologically diverse dry tropical community.

Key results: Very good fit of structural equation models showed that the causal model is highly congruent with the data.

Conclusions: Given similar amounts of carbon to allocate to stem growth, larger-leaved species require greater leaf spacing and therefore greater stem extension rates and longer stems, in turn requiring lower-density, more flexible, stem tissues than small-leaved species. A given stem can have high resistance to bending because it is thick (has high second moment of area I) or because its tissues are stiff (high Young's modulus E), the so-called E-I trade-off. Because of the E-I trade-off, large-leaved species have fast stem growth rates, low stem tissue density and tissue stiffness, and thick twigs with wide piths and thick bark. The agreement between hypothesis and data in structural equation analyses strongly suggests that Corner's rules emerge as the result of selection favouring the avoidance of self-shading in the context of broadly similar rates of carbon fixation per unit crown area across species.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app