Journal Article
Review
Add like
Add dislike
Add to saved papers

Using Drosophila Models of Amyloid Toxicity to Study Autophagy in the Pathogenesis of Alzheimer's Disease.

Autophagy is a conserved catabolic pathway that involves the engulfment of cytoplasmic components such as large protein aggregates and organelles that are delivered to the lysosome for degradation. This process is important in maintaining neuronal function and raises the possibility of a role for autophagy in neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent form of these diseases and is characterized by the accumulation of amyloid plaques in the brain which arise due to the misfolding and aggregation of toxic peptides, including amyloid beta (A β ). There is substantial evidence from both AD patients and animal models that autophagy is dysregulated in this disease. However, it remains to be determined whether this is protective or pathogenic as there is evidence that autophagy can act to promote the degradation as well as function in the generation of toxic A β peptides. Understanding the molecular details of the extensive crosstalk that occurs between the autophagic and endolysosomal cellular pathways is essential for identifying the molecular details of amyloid toxicity. Drosophila models that express the toxic proteins that aggregate in AD have been generated and have been shown to recapitulate hallmarks of the disease. Here we focus on what is known about the role of autophagy in amyloid toxicity in AD from mammalian models and how Drosophila models can be used to further investigate AD pathogenesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app