Add like
Add dislike
Add to saved papers

Short-term exercise training reduces anti-inflammatory action of interleukin-10 in adults with obesity.

Cytokine 2018 November
A key pathological component of obesity is chronic low-grade inflammation, which is propagated by infiltration of immune cells into tissues and overproduction of pro-inflammatory cytokines. Cytokines that possess anti-inflammatory properties, such as interleukin (IL)-10 and IL6, may also play an important role. This study was designed to determine the impact of short-term exercise on the anti-inflammatory action of IL10 and IL6. Thirty-three inactive obese adults were randomized to two weeks of high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT). Fasting blood samples were collected before and after training. Lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production was measured in whole blood cultures in the presence or absence of IL10 or IL6. IL10 and IL6 receptor expression were measured on circulating monocytes, neutrophils, and T cells. HIIT and MICT reduced the ability of IL10 to inhibit LPS-induced TNFα production, with a greater effect with HIIT (Group × Time and IL10 × Time interactions, p's < 0.05). This reduction in IL10 function was not explained by altered IL10R1 expression, which was unchanged after training (p > 0.05). HIIT and MICT differentially affected IL6 function (Group × Time and IL6 × Time interactions, p's < 0.05) with evidence of reductions in the anti-inflammatory ability of IL6 with HIIT. Neither HIIT nor MICT altered levels of circulating IL10, IL6, or TNFα. The impact of short-term HIIT and MICT resulted in differential effects on anti-inflammatory cytokine function. The clinical implications remain to be determined but these novel findings indicate that measuring anti-inflammatory cytokine action could reveal important immunomodulatory effects of exercise.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app