Journal Article
Randomized Controlled Trial
Add like
Add dislike
Add to saved papers

Propofol post-conditioning after temporary clipping reverses oxidative stress in aneurysm surgery.

PURPOSE: Animal studies have demonstrated that propofol post-conditioning produces long-term neuroprotection in focal cerebral ischemia-reperfusion injury. However, whether propofol post-conditioning provides neuroprotection in human beings has never been explored. The aim of this study was to evaluate the role of propofol post-conditioning on oxidative stress and post-operative cognitive function following aneurysm clipping.

MATERIALS AND METHODS: Sixty patients undergoing intracranial aneurysm clipping were randomized into a propofol post-conditioning group or a sevoflurane group. Sevoflurane (0.5-2%) was used for maintenance anesthesia in both groups. In the propofol post-conditioning group, the inhaled concentration of sevoflurane was reduced after temporary clip removal to keep the bispectral index (BIS) value between 40 and 60, and propofol (Cp 1.2 µg/mL) was subsequently started. Blood samples were drawn at six time points: before induction, immediately after clip removal, at the end of the operation, 24-h post-surgery, 3 days post-surgery, and 7 days post-surgery. Oxidative stress and cognitive function were measured.

RESULTS: Between the conclusion of the operation to 7 days after surgery, propofol post-conditioning decreased the serum concentration of •OH and 8-isoprostane and increased γ-tocopherol and SOD. Reduced micronuclei and nucleoplasmic bridges were observed in the propofol post-conditioning group. Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) scores were improved by propofol post-conditioning compared to the group that received no propofol.

CONCLUSIONS: Together, our data suggest that propofol post-conditioning (Cp 1.2 µg/mL) may protect the brain from oxidative stress injury up to 7 days post-surgery after temporary parent artery clipping. Furthermore, the neuroprotection induced by propofol post-conditioning may contribute to improvement in cognitive function.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app