Add like
Add dislike
Add to saved papers

Rational Application of Fertilizer Nitrogen to Soil in Combination With Foliar Zn Spraying Improved Zn Nutritional Quality of Wheat Grains.

To alleviate human zinc (Zn) deficiency, it is worthy to develop rational agronomic managements to achieve high yielding and high resource-use efficiency wheat ( Triticum aestivum L.) grains biofortified with Zn. Effects of application of three rates of nitrogen (N) fertilizer (75,200 and 275 kg·ha-1 ) to soil in combination with three foliar applications (deionized water, Zn alone, and a combination of Zn and sucrose) on grain yield, yield components, grain Zn concentration, protein, phytic acid (PA), phosphorus (P), calcium (Ca), and carbon (C), as well as on Zn bioavailability, were investigated in four wheat cultivars ("Jinan 17," "Jimai 20," "Jimai 22," and "Luyuan 502") under field conditions. Enhanced N increased Zn and protein concentrations as well as bioavailability; excessive N input did not result in further improvements. Zinc spraying was more effective than soil fertilizer N application, the spray of Zn (with or without sucrose) increased grain Zn concentrations by 11.1-15.6 mg·kg-1 (27.1-38.1%), and increased grain Zn bioavailability, estimated using total daily absorbed Zn (TAZ) and molar ratios of PA/Zn) and PA × Ca/Zn, by 0.4-0.6 mg d-1 (28.6-42.9%), 23.1-27.4% and 24.0-28.0%, respectively. Remarkably, increases caused by 'Zn + sucrose' were higher than spraying Zn alone. Grain Zn bioavailability was more sensitive to the selection of cultivar than Zn concentrations. Among cultivars, the higher the grain yields and concentrations of antinutritional compounds, the lower the grain Zn nutritional quality would be. 200 kg N ha-1 application rate in combination with foliar spraying of "Zn + sucrose" maximized grain Zn concentrations of "Jinan 17," "Jimai 20," "Jimai 22," and "Luyuan 502" to be 59.4, 56.9, 55.8, and 60.9 mg kg-1 , respectively, achieving the target value for biofortification. Additionally, PA/Zn and PA × Ca/Zn of "Jinan 17," "Jimai 20," and "Luyuan 502" were <15 and 200, and TAZ was maximized to be 2.2, 2.0, and 2.1 mg d-1 , respectively, indicating higher bioavailability. Therefore, optimal soil N and foliar Zn management together with suitable cultivars maintained high grain yield with lower N input and could substantially increase grain Zn nutritional quality simultaneously.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app