Add like
Add dislike
Add to saved papers

Dual-Stimulus-Triggered Programmable Drug Release and Luminescent Ratiometric pH Sensing from Chemically Stable Biocompatible Zinc Metal-Organic Framework.

Metal-organic frameworks (MOFs), as drug delivery carriers, with high loading capacity and controllable release behavior can provide a more efficacious therapy in cancer treatments. In our work, a novel biocompatible zinc MOF Zn-cpon-1 with the (3,6)-connected rtl 3D topological network was designed and synthesized via employing ClO4 - anion as template. The optically and chemically stable Zn-cpon-1 could be verified as a pH-responsive dual-emission platform and excellent drug delivery carrier with higher 5-fluorouracil (5-FU) (44.75 wt %) loading behavior than 6-mercaptopurine (6-MP) (4.79 wt %) ascribed to the influence of size and shape matching. The multiple interactions between Zn-cpon-1 and 5-FU drug molecules have been discussed and evidenced, which could be quantitatively estimated via the rate constant related to the topological structure. Specially, the gust release behavior of 5-FU@Zn-cpon-1 microcrystal was described and programmed via the Weibull distribution model and could be dual-triggered by the temperature and pH stimulus. This study illustrates that the Zn-cpon-1 without any postmodification performs a favorable potential of being used as biomedical drug delivery alternative carriers in effective drug payload, flexible release administration, and superior dual-stimuli responsiveness.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app