Add like
Add dislike
Add to saved papers

Quinoprotein dehydrogenase functions at the final oxidation step of lankacidin biosynthesis in Streptomyces rochei 7434AN4.

Reinvestigation of the metabolite profile in a disruptant of the quinoprotein dehydrogenase (orf23) gene revealed that the Orf23 protein catalyzes dehydrogenation of the C23-C25 lactate moiety to pyruvate during lankacidin biosynthesis in Streptomyces rochei 7434AN4. The dehydrogenase activity was expressed and detected in a soluble fraction of the Streptomyces lividans recombinant harboring orf23. The Orf23 protein preferentially converts lankacidinol to lankacidin C in the presence of pyrroloquinoline quinone (PQQ). Other lankacidinol derivatives, lankacidinol A and iso-lankacidinol, were also converted to the corresponding C-24 keto compounds, lankacidin A (=sedecamycin) and iso-lankacidin C. Addition of various divalent metal cations, especially Ca2+ , enhanced the dehydrogenase activity, whereas EDTA completely inhibited. These findings confirmed that the quinoprotein dehydrogenase Orf23 functions at the final oxidation step of lankacidin biosynthesis.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app