Add like
Add dislike
Add to saved papers

Pregnancy preserves pulmonary function following influenza virus infection in C57BL/6 mice.

Pregnancy is associated with significant anatomic and functional changes to the cardiopulmonary system. Using pregnant C57BL/6 mice, we characterized changes in pulmonary structure and function during pregnancy in healthy animals and following infection with influenza A virus (IAV). We hypothesized that pregnancy-associated alterations in pulmonary physiology would contribute to the more severe outcome of IAV infection. Nonpregnant and pregnant females (at embryonic day 10.5) were either mock-infected or infected with 2009 H1N1 IAV for assessment of pulmonary function, structure, and inflammation at 8 days postinoculation. There were baseline differences in pulmonary function, with pregnant females having greater lung compliance, total lung capacity, and fixed lung volume than nonpregnant females. Following IAV infection, both pregnant and nonpregnant females exhibited reduced circulating progesterone, which in nonpregnant females was associated with increased pulmonary resistance and decreased lung compliance, minute ventilation, and oxygen diffusing capacity compared with uninfected nonpregnant females. In pregnant females, reduced concentrations of progesterone were associated with adverse pregnancy outcomes, but measures of pulmonary function were preserved following IAV infection and were not significantly different from uninfected pregnant mice. Following IAV infection, infectious virus titers and total numbers of pulmonary leukocytes were similar between pregnant and nonpregnant females, but the histological density of pulmonary inflammation was reduced in pregnant animals. These data suggest that pregnancy in mice is associated with significant alterations in pulmonary physiology but that these changes served to preserve lung function during IAV infection. Pregnancy-associated alterations in pulmonary physiology may serve to protect females during severe influenza.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app