Add like
Add dislike
Add to saved papers

Efficient and accurate analysis of microRNA using a specific extension sequence.

We present here on an innovative assay for detecting miRNAs using a uniquely designed specific extension sequence that provides high efficiency and accuracy. This assay consists of poly(A) tailing and reverse transcription followed by real-time PCR. In the first step of this reaction, target miRNAs are poly(A) tailed by poly(A) polymerase followed by cDNA synthesis using poly(T) adaptors. In the second step, cDNA is hybridized to the 3'-end of a specific extension sequence that contains part of a miRNA sequence; this cDNA-specific extension sequence hybrid forms the novel PCR template. The PCR template is amplified in a SYBR Green-based quantitative real-time PCR with universal forward and reverse primers. The miR-106b in human brain total RNA could be detected quantitatively in the range of seven orders of magnitude with high linearity and reproducibility. This innovative extension-based assay has several performance advantages over the poly(A) tailing method that include lower CT values, clear gel electrophoresis images, and distinct nucleotide peaks in sequencing chromatograms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app