Add like
Add dislike
Add to saved papers

Ethylenediaminetetraacetic Acid Inhibits Vibrio Vulnificus-Induced Dendritic Cell Apoptosis by Lowering [Ca2+]i.

Neuro-Signals 2018 May 23
BACKGROUND/AIMS: Vibrio vulnificus (V. vulnificus) is a Gram-negative marine bacterium that can cause life-threatening primary septicemia, especially in the innate immune system. But how V. vulnificus affects and acts on dendritic cells (DC) is not well understood. The aim of the present study is to investigate [Ca2+]i change and the expression of the mTor-STAT3-Bcl-2 signaling pathway in V. vulnificus B2-induced DC apoptosis, and explore the protective effect of ethylenediaminetetraacetic acid (EDTA) against DC apoptosis in a V. vulnificus B2 and DC2.4 cell coculture infection model, using EDTA as an intervenient.

METHODS: The apoptosis rate, [Ca2+]i, and the expression of STAT3, m-Tor and Bcl-2 were detected by cytometry, Fluo-8-AM and Western blotting respectively.

RESULTS: The results demonstrated that EDTA inhibited the increase of [Ca2+]i, upregulated the expression of m-Tor-STAT3-Bcl-2 signaling pathway, and protected DC against V. vulnificus B2-induced apoptosis.

CONCLUSIONS: EDTA inhibits V. Vulnificus-induced DC apoptosis by lowering [Ca2+]i via m-Tor-STAT3-Bcl-2 signaling pathway.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app