Add like
Add dislike
Add to saved papers

Microbial synthesis of mammalian metabolites of spironolactone by thermophilic fungus Thermomyces lanuginosus.

Steroids 2018 August
Mesophilic fungi are well recognized as models of mammalian drug metabolism. Thermophilic fungi remained unexplored despite having a unique mechanism of growing at higher temperatures and performing wide diverse reactions. The present investigation is directed to isolate a promising thermophilic fungal strain capable of biotransformation using spironolactone as a model drug. Two-stage fermentation protocol was followed for the process. The transformation of spironolactone was identified by HPLC and structure elucidation of the metabolites was done with the help of LC-MS/MS analysis and previous reports. A strain of Thermomyces lanuginosus isolated from decomposed banana peel waste was found to be most promising in transforming spironolactone to 4 metabolites viz.7α-thiospironolactone (M1) canrenone (M2), 7α-thiomethylspironolactone (M3) and 6β-OH-7α-thiomethylspironolactone (M4), the major mammalian metabolites reported previously. The synthesis of metabolites of spironolactone by T. lanuginosus similar to mammals clearly states that this fungus possess enzyme system similar to mammals. Hence, this fungus has the potential to use as a model organism for studying drug metabolism.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app