Add like
Add dislike
Add to saved papers

Thermal acclimation is not induced by habitat-of-origin, maintenance temperature, or acute exposure to low or high temperatures in a pit-building wormlion (Vermileo sp.).

Wormlions are sit-and-wait insect predators that construct pit-traps to capture arthropod prey. They require loose soil and shelter from direct sun, both common in Mediterranean cities, and explaining their high abundance in urban habitats. We studied different aspects of thermal acclimation in wormlions. We compared chill-coma recovery time (CCRT) and heat-shock recovery time (HSRT) of wormlions from urban, semi-urban and natural habitats, expecting those originating from the urban habitat to be more heat tolerant and less cold tolerant. However, no differences were detected among the three habitats. We then examined whether maintenance temperature affects CCRT and HSRT, and expected beneficial acclimation. However, CCRT was unaffected by maintenance temperature, while temperature affected HSRT in an opposite direction to our prediction: wormlions maintained under the higher temperatures took longer to recover. When testing with two successive thermal shocks, wormlions took longer to recover from both cold and heat shock after applying an initial cold shock. We therefore conclude that cold shock inflicts some damage rather than induces acclimation. Finally, both cold- and heat-shocked wormlions constructed smaller pits than wormlions of a control group. Smaller pits probably translate to a lower likelihood of capturing prey and also limit the size of the prey, indicating a concrete cost of thermal shock. In summary, we found no evidence for thermal acclimation related either to the habitat-of-origin or to maintenance temperatures, but, rather, negative effects of unfavorable temperatures.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app