Add like
Add dislike
Add to saved papers

The C and E subunits of the serotonin 5-HT 3 receptor subtly modulate electrical properties of the receptor.

Serotonin type 3 (5-hydroxytrptamine-3, 5-HT3 ) receptors are ligand-gated cation channels present in both central and peripheral nervous systems. In humans there are five different subunits (A, B, C, D and E) of 5-HT3 receptors which can form homomeric or heteromeric receptors that may account for discrepancies in patient responses to treatments. The present study commences characterisation of the profiles of human 5-HT3 receptors containing C and/or E subunits. Recombinant 5-HT3 receptors were expressed transiently in HEK293T cells and expression was checked via immunocytochemistry staining against each epitope-tagged subunits. Functional characterisation of different combinations of 5-HT3 receptor complexes was studied via patch clamp whole cell recordings. In this study, increased current was seen in cells containing A and C subunits but only subtle changes were seen in the electrical properties of cells expressing A, AE, or ACE subunits in response to the ligand, 5-HT. Both di- and tri-heteromeric 5-HT3 receptors were significantly inhibited by the antagonists, ondansetron and palonosetron. Notably, palonosetron exerted stronger and more rapid inhibition on the 5-HT3 receptor ACE tri-heteromer compared to homomeric and di-heteromeric counterparts. This study demonstrated that the C and E subunits when assembled as simple or complex heteromeric 5-HT3 receptors may alter efficacies of 5-HT and clinically used antagonists such as ondansetron and palonosetron, and this in turn may have implications for patient responses to therapies.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app