Add like
Add dislike
Add to saved papers

Graphene oxide and carbon nanodots co-modified BiOBr nanocomposites with enhanced photocatalytic 4-chlorophenol degradation and mechanism insight.

Non-metallic graphene oxide (GO) and carbon nanodots (CDots) co-doped BiOBr ternary system (GO/CDots/BiOBr) were successfully synthesized via a simple one-step solvothermal process. The compositional characterization, optical and electrical properties of photocatalysts were investigated in detail. The prepared ternary photocatalysts possessed the excellent visible-light driven photocatalytic 4-chlorophenol (4-CP) degradation. Additionally, the 4-CP removal efficiencies decreased in the order of GO/CDots/BiOBr (88.9%) > CDots/BiOBr (62.9%) > GO/BiOBr (60.5%) > pristine BiOBr (46.9%) in 6 h under visible light irradiation. The dissolved organic carbon (DOC) removal and the dechlorination efficiency by the GO/CDots/BiOBr were 58.4% and 78.2%, respectively, much higher than pristine BiOBr. The co-existence of GO and CDots on the BiOBr greatly promoted visible light harvesting and utilizing ability and inhibited the recombination of photogenerated electron/hole pairs. The synergistic effect between GO, CDots and BiOBr was expounded, and the photocatalytic reaction mechanism was proposed in detail via the band structure analysis and free radical trapping experiments.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app