Add like
Add dislike
Add to saved papers

Imbalanced nutrient regimes increase Prymnesium parvum resilience to herbicide exposure.

Harmful Algae 2018 May
The toxigenic haptophyte Prymnesium parvum is a mixotrophic phytoplankter with an extensive historic record of forming nearly monospecific, high-biomass, ecosystem-disrupting blooms, and it has been responsible for major fish kills in brackish waters and aquaculture facilities in many regions of the world. Little is known about how this species responds to commonly occurring environmental contaminants, or how nutrient (nitrogen, phosphorus) pollution may interact with environmentally relevant pesticide exposures to affect this harmful algal species. Here, standard algal toxicity bioassays from pesticide hazard assessments were used along with modified erythrocyte lysis assays to evaluate how atrazine exposures, imbalanced nutrient supplies, and salinity interact to influence the growth and toxicity in P. parvum isolates from three different regions. In nutrient-replete media, P. parvum 96 h IC50 s ranged from 73.0 to 88.3 μg atrazine L-1 at salinity 10 and from 118 to >200 μg atrazine μg L-1 at salinity 20, and the response depended on the strain and the test duration. Relative hemolytic activity, used as an indication of toxicity, was a function of herbicide exposure, nutrient availability, salinity, geographic origin, and interactions among these factors. Highest levels of hemolytic activity were measured from a South Carolina strain in low-nitrogen media with high atrazine concentrations. Herbicide concentration was related to relative hemolytic activity, although a consistent relationship between growth phase and toxicity was not observed. Overall, these findings suggest that increasing chemical contamination is helping to promote ecosystem-disruptive, strongly mixotrophic algal blooms.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app