Add like
Add dislike
Add to saved papers

Synergistic effect of TRAIL and irradiation in elimination of glioblastoma stem-like cells.

Glioblastoma multiforme (GBM) is the most common malignancy in central nervous system. A small subpopulation of GBM cells known as GBM stem-like cells (GSLCs) were supposed to be the most malignant cells among GBM cells as they are resistant to multiple therapies including radiotherapy. In this study, we set up two GSLCs cell lines from the two parental U87 and U251 glioma cell lines, and studied the expression of apoptosis-related genes alteration in GSLCs before and after irradiation. We found that one of the receptors of TNF-related apoptosis-inducing ligand (TRAIL), DR5, was dramatically up-regulated in GSLCs after irradiation (IR). Although GSLCs are resistant to both TRAIL and radiation treatment alone, the combined treatment with TRAIL and irradiation achieved maximum killing effect of GSLCs due to inducing the expression of DR5 and inhibiting the expression of cFLIP. Therefore, TRAIL and IR combined treatment would be a simple but practical therapeutic strategy for clinical application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app