Add like
Add dislike
Add to saved papers

Heat shock influences the fatty acid composition of the muscle of the Antarctic fish Trematomus bernacchii.

In the Ross Sea region (average temperature of -1.87 °C), shelf water warming up to +0.8-+1.4 °C is predicted by 2200, so there is an urgent need to understand how organisms can respond to rising temperatures. In this study, we analyzed the effect of a heat shock on the fatty acid (FAs) composition of muscle of the Antarctic teleost Trematomus bernacchii, caught in Terra Nova Bay (Ross Sea), and held in fish tanks at 0, +1 or +2 °C, for 1, 5 and 10 days. In general, heat shock produced, beyond a reduction in total lipid content correlated to the temperature, an increase in the percentage of saturated FAs, and a decrease in mono-unsaturated FAs; however, the level of poly-unsaturated FAs did not seem to directly correlate with temperature. Principal component analysis indicated that both temperature and exposure time affect the composition of FAs in the muscle probably through an alteration of the metabolic pathways of FAs. In this study, we demonstrated that T. bernacchii was capable to rapidly acclimatize to a heat shock. This study contributes to increasing knowledge on the effect of temperature on the lipid composition of T. bernacchii and is complementary to previous studies on the gene expression and biochemistry of this species face multiple stressors.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app