Add like
Add dislike
Add to saved papers

SnO 2 /Reduced Graphene Oxide Interlayer Mitigating the Shuttle Effect of Li-S Batteries.

The short cycle life of lithium-sulfur batteries (LSBs) plagues its practical application. In this study, a uniform SnO2 /reduced graphene oxide (denoted as SnO2 /rGO) composite is successfully designed onto the commercial polypropylene separator for use of interlayer of LSBs to decrease the charge-transfer resistance and trap the soluble lithium polysulfides (LPSs). As a result, the assembled devices using the separator modified with the functional interlayer (SnO2 /rGO) exhibit improved cycle performance; for instance, over 200 cycles at 1C, the discharge capacity of the cells reaches 734 mAh g-1 . The cells also display high rate capability, with the average discharge capacity of 541.9 mAh g-1 at 5C. Additionally, the mechanism of anchoring behavior of the SnO2 /rGO interlayer was systematically investigated using density functional theory calculations. The results demonstrate that the improved performance is related to the ability of SnO2 /rGO to effectively absorb S8 cluster and LPS. The strong Li-O/Sn-S/O-S bonds and tight chemical adsorption between LPS and SnO2 mitigate the shuttle effect of LSBs. This study demonstrates that engineering the functional interlayer of metal oxide and carbon materials in LSBs may be an easy way to improve their rate capacity and cycling life.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app