Add like
Add dislike
Add to saved papers

Association of IL17RC and COL6A1 genetic polymorphisms with susceptibility to ossification of the thoracic posterior longitudinal ligament in Chinese patients.

BACKGROUND: In our previous whole-genome sequencing study of 30 unrelated northern Chinese Han patients, we identified six single nucleotide polymorphisms (SNPs) in the interleukin 17 receptor C (IL17RC) and collagen type VI α1 chain (COL6A1) genes that were potentially associated with thoracic ossification of the posterior longitudinal ligament (T-OPLL). To determine whether these six SNPs are associated with susceptibility to T-OPLL in the northern Chinese Han population, we performed a case-control association study to confirm specific susceptible loci in the expanded samples.

METHODS: The six SNPs in the IL17RC and COL6A1 genes were analyzed in 200 northern Chinese individuals (100 patients and 100 control subjects) using the Sequenom system.

RESULTS: The genotype distributions and allele frequencies of each SNP in the control and patient groups were compared. rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 showed potential pathogenic loci for T-OPLL in the northern Chinese Han population, whereas rs151158105 did not. At the genotype level, the differences in the genotype frequencies of rs201153092, rs13051496, rs199772854, rs76999397, and rs189013166 between T-OPLL cases and controls reached statistical significance.

CONCLUSIONS: To the best of our knowledge, this is the first association study of susceptibility genes in Han Chinese patients with T-OPLL. The results revealed five SNPs in the IL17RC and COL6A1 genes that represented potentially pathogenic mutations in patients with T-OPLL.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app