Add like
Add dislike
Add to saved papers

The Extent of Mechanical Esophageal Deviation to Avoid Esophageal Heating During Catheter Ablation of Atrial Fibrillation.

OBJECTIVES: This study sought to determine the extent of lateral esophageal displacement required during mechanical esophageal deviation (MED) and to eliminate luminal esophageal temperature elevation (LETElev ) during pulmonary vein (PV) isolation.

BACKGROUND: MED is a conceptually attractive strategy of minimizing esophageal injury while allowing uninterrupted energy delivery along the posterior left atrium during PV isolation.

METHODS: MED was performed using a malleable metal stylet within a plastic tube placed within the esophagus. Barium was instilled to characterize the trailing esophageal edge. For each MED attempt, the MEDEffective , defined as the distance from the trailing esophageal edge-to-ablation line, was correlated to occurrences of LETElev .

RESULTS: In 114 consecutive patients/221 PV pairs undergoing MED (age 62.1 ± 11 years, 75% men, 62%/38% paroxysmal/persistent AF), esophageal stretching invariably occurred such that the esophageal edge trailed behind the plastic tube. MEDEffective distances of 0 mm to 10 mm, 10 mm to 15 mm, 15 mm to 20 mm or >20 mm were achieved in 60 (27.1%), 64 (29%), 48 (21.7%), and 49 (22.2%) attempts, respectively. Overall, LET elevation >38°C occurred in 81 of 221 (36.7%) PV pairs. The incidence of LETElev among the 4 groups was 73.3%, 35.9%, 25%, and 4.1%, respectively. MEDEffective distances were 9.1 ± 6.5 mm and 18 ± 7.6 mm in patients with and without LETElev , respectively (p < 0.0001). Three patients (2.6%) experienced clinically significant MED-related trauma, albeit only with a stiffer stylet.

CONCLUSIONS: Mechanical esophageal deviation >20 mm from the PV ablation line prevents significant esophageal heating during PV isolation, but this level of displacement was difficult to safely achieve with this off-the-shelf mechanical stylet approach.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app