Add like
Add dislike
Add to saved papers

High nitrogen isotope fractionation of nitrate during denitrification in four forest soils and its implications for denitrification rate estimates.

Denitrification is a major process contributing to the removal of nitrogen (N) from ecosystems, but its rate is difficult to quantify. The natural abundance of isotopes can be used to identify the occurrence of denitrification and has recently been used to quantify denitrification rates at the ecosystem level. However, the technique requires an understanding of the isotopic enrichment factor associated with denitrification, which few studies have investigated in forest soils. Here, soils collected from two tropical and two temperate forests in China were incubated under anaerobic or aerobic laboratory conditions for two weeks to determine the N and oxygen (O) isotope enrichment factors during denitrification. We found that at room temperature (20°C), NO3 - was reduced at a rate of 0.17 to 0.35μgNg-1 h-1 , accompanied by the isotope fractionation of N (15 ε) and O (18 ε) of 31‰ to 65‰ (48.3±2.0‰ on average) and 11‰ to 39‰ (18.9±1.7‰ on average), respectively. The N isotope effects were, unexpectedly, much higher than reported in the literature for heterotrophic denitrification (typically ranging from 5‰ to 30‰) and in other environmental settings (e.g., groundwater, marine sediments and agricultural soils). In addition, the ratios of Δδ18 O:Δδ15 N ranged from 0.28 to 0.60 (0.38±0.02 on average), which were lower than the canonical ratios of 0.5 to 1 for denitrification reported in other terrestrial and freshwater systems. We suggest that the isotope effects of denitrification for soils may vary greatly among regions and soil types and that gaseous N losses may have been overestimated for terrestrial ecosystems in previous studies in which lower fractionation factors were applied.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app