Add like
Add dislike
Add to saved papers

Landau theory of the short-time dynamical phase transitions of the Kardar-Parisi-Zhang interface.

We study the short-time distribution P(H,L,t) of the two-point two-time height difference H=h(L,t)-h(0,0) of a stationary Kardar-Parisi-Zhang interface in 1+1 dimension. Employing the optimal-fluctuation method, we develop an effective Landau theory for the second-order dynamical phase transition found previously for L=0 at a critical value H=H_{c}. We show that |H| and L play the roles of inverse temperature and external magnetic field, respectively. In particular, we find a first-order dynamical phase transition when L changes sign, at supercritical H. We also determine analytically P(H,L,t) in several limits away from the second-order transition. Typical fluctuations of H are Gaussian, but the distribution tails are highly asymmetric. The tails -lnP∼|H|^{3/2}/sqrt[t] and -lnP∼|H|^{5/2}/sqrt[t], previously found for L=0, are enhanced for L≠0. At very large |L| the whole height-difference distribution P(H,L,t) is time-independent and Gaussian in H, -lnP∼|H|^{2}/|L|, describing the probability of creating a ramplike height profile at t=0.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app