Journal Article
Research Support, Non-U.S. Gov't
Add like
Add dislike
Add to saved papers

Chronic hyperinsulinemia promotes meta-inflammation and extracellular matrix deposition in adipose tissue: Implications of nitric oxide.

Various imperative studies support the notion that hyperinsulinemia (HI) itself serves as the common link between adipose tissue inflammation (ATI) and metabolic syndrome. However, the contribution of HI mediated ATI and its metabolic consequences are yet to be explored. We induced chronic HI per se in mice by administration of exogenous insulin for 8 weeks through mini-osmotic pumps. For the reduction of circulating insulin in response to excess calorie intake, we have partially ablated β-cells by using streptozotocin (STZ) in the diet-induced obesity (DIO) and genetic mice models (db/db). Flow cytometry analysis was performed for the quantification of immune cells in stromal vascular fraction (SVF) isolated from epididymal white adipose tissue (eWAT). Our studies demonstrated that chronic HI augmented ATI in terms of elevated pro-inflammatory cells (M1 macrophages and NK-cells) and suppressed anti-inflammatory cells (M2 macrophages, eosinophils and regulatory T-cells). These results were correlated with altered obesity-associated metabolic phenotype. Partial reduction of circulating insulin level attenuated excess calorie-induced ATI and improved insulin sensitivity. Mechanistically, an imbalance in M1 and M2 macrophage proportions in eWAT promoted iNOS (inducible nitric oxide synthase): arginase-1 imbalance that resulted into extracellular matrix (ECM) deposition and insulin resistance (IR) development. However, iNOS-/- mice were protected from HI-induced M1:M2 macrophage imbalance, ECM deposition and IR in adipose tissue. Overall, we conclude that chronic HI per se contributed in ATI and iNOS corroborated ECM deposition.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app