Add like
Add dislike
Add to saved papers

Microarray‑based bioinformatics analysis of the prospective target gene network of key miRNAs influenced by long non‑coding RNA PVT1 in HCC.

The long non‑coding RNA (lncRNA) PVT1 plays vital roles in the tumorigenesis and development of various types of cancer. However, the potential expression profiling, functions and pathways of PVT1 in HCC remain unknown. PVT1 was knocked down in SMMC‑7721 cells, and a miRNA microarray analysis was performed to detect the differentially expressed miRNAs. Twelve target prediction algorithms were used to predict the underlying targets of these differentially expressed miRNAs. Bioinformatics analysis was performed to explore the underlying functions, pathways and networks of the targeted genes. Furthermore, the relationship between PVT1 and the clinical parameters in HCC was confirmed based on the original data in the TCGA database. Among the differentially expressed miRNAs, the top two upregulated and downregulated miRNAs were selected for further analysis based on the false discovery rate (FDR), fold‑change (FC) and P‑values. Based on the TCGA database, PVT1 was obviously highly expressed in HCC, and a statistically higher PVT1 expression was found for sex (male), ethnicity (Asian) and pathological grade (G3+G4) compared to the control groups (P<0.05). Furthermore, Gene Ontology (GO) analysis revealed that the target genes were involved in complex cellular pathways, such as the macromolecule biosynthetic process, compound metabolic process, and transcription. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the MAPK and Wnt signaling pathways may be correlated with the regulation of the four candidate miRNAs. The results therefore provide significant information on the differentially expressed miRNAs associated with PVT1 in HCC, and we hypothesized that PVT1 may play vital roles in HCC by regulating different miRNAs or target gene expression (particularly MAPK8) via the MAPK or Wnt signaling pathways. Thus, further investigation of the molecular mechanism of PVT1 in HCC is needed.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app