Add like
Add dislike
Add to saved papers

High-Switching-Ratio Photodetectors Based on Perovskite CH₃NH₃PbI₃ Nanowires.

Nanomaterials 2018 May 11
Hybrid organic-inorganic perovskite materials have attracted extensive attention due to their impressive performance in photovoltaic devices. One-dimensional perovskite CH₃NH₃PbI₃ nanomaterials, possessing unique structural features such as large surface-to-volume ratio, anisotropic geometry and quantum confinement, may have excellent optoelectronic properties, which could be utilized to fabricate high-performance photodetectors. However, in comparison to CH₃NH₃PbI₃ thin films, reports on the fabrication of CH₃NH₃PbI₃ nanowires for optoelectrical application are rather limited. Herein, a two-step spin-coating process has been utilized to fabricate pure-phase and single-crystalline CH₃NH₃PbI₃ nanowires on a substrate without mesoporous TiO₂ or Al₂O₃. The size and density of CH₃NH₃PbI₃ nanowires can be easily controlled by changing the PbI₂ precursor concentration. The as-prepared CH₃NH₃PbI₃ nanowires are utilized to fabricate photodetectors, which exhibit a fairly high switching ratio of ~600, a responsivity of 55 mA/W, and a normalized detectivity of 0.5 × 1011 jones under 532 nm light illumination (40 mW/cm²) at a very low bias voltage of 0.1 V. The as-prepared perovskite CH₃NH₃PbI₃ nanowires with excellent optoelectronic properties are regarded to be a potential candidate for high-performance photodetector application.

Full text links

We have located links that may give you full text access.
Can't access the paper?
Try logging in through your university/institutional subscription. For a smoother one-click institutional access experience, please use our mobile app.

Related Resources

For the best experience, use the Read mobile app

Mobile app image

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app

All material on this website is protected by copyright, Copyright © 1994-2024 by WebMD LLC.
This website also contains material copyrighted by 3rd parties.

By using this service, you agree to our terms of use and privacy policy.

Your Privacy Choices Toggle icon

You can now claim free CME credits for this literature searchClaim now

Get seemless 1-tap access through your institution/university

For the best experience, use the Read mobile app